A hierarchical model to estimate the abundance and biomass of salmonids by using removal sampling and biometric data from multiple locations
نویسندگان
چکیده
We present a Bayesian hierarchical model to estimate the abundance and the biomass of brown trout (Salmo trutta fario) by using removal sampling and biometric data collected at several stream sections. The model accounts for (i) variability of the abundance with fish length (as a distribution mixture), (ii) spatial variability of the abundance, (iii) variability of the catchability with fish length (as a logit regression model), (iv) spatial variability of the catchability, and (v) residual variability of the catchability with fish. Model measured variables are the areas of the stream sections as well as the length and the weight of the caught fish. We first test the model by using a simulated dataset before using a 3-location, 2removal sampling dataset collected in the field. Fifteen model alternatives are compared with an index of complexity and fit by using the field dataset. The selected model accounts for variability of the abundance with fish length and stream section and variability of the catchability with fish length. By using the selected model, 95% credible interval estimates of the abundances at the three stream sections are (0.46,0.59), (0.90,1.07), and (0.56,0.69) fish/m2. Respective biomass estimates are (9.68, 13.58), (17.22, 22.71), and (12.69, 17.31) g/m2. Résumé : Nous présentons un modèle hiérarchique bayésien pour estimer l’abondance et la biomasse de truites brunes (Salmo trutta fario) basé sur un échantillonnage par retraits et des données biométriques récoltées sur plusieurs sections de cours d’eau. Le modèle tient compte de (i) la variabilité de l’abondance en fonction de la longueur des poissons (comme une distribution de mélange), (ii) la variabilité spatiale de l’abondance, (iii) la variabilité de la capturabilité en fonction de la longueur du poisson (comme modèle de régression logit), (iv) la variation spatiale de la capturabilité et (v) la variabilité résiduelle de la capturabilité en fonction des poissons. Les variables mesurées du modèle incluent les surfaces des sections de cours d’eau, ainsi que la longueur et la masse des poissons capturés. Nous testons le modèle à l’aide d’une banque de données simulées avant d’utiliser un ensemble de données récoltées à trois sites et en deux échantillonnages par retraits en nature. Nous comparons quinze modèles de rechange avec un indice de complexité et d’ajustement aux données de terrain. Le modèle retenu tient compte de la variabilité de l’abondance en fonction de la longueur des poissons et de la section de cours d’eau, ainsi que de la variabilité de la capturabilité en fonction de la longueur des poissons (sans la variabilité spatiale ou résiduelle de la capturabilité). Dans le modèle retenu, les estimations de l’intervalle crédible au niveau de 95 % de l’abondance dans les trois sections de cours d’eau sont (0,46; 0,59), (0,90; 1,07) et (0,56; 0,69) poissons/m2. Les estimations de biomasses correspondantes sont (9,68; 13,58), (17,22; 22.71) et (12,69; 17,31) g/m2. [Traduit par la Rédaction]
منابع مشابه
A hierarchical model to estimate fish abundance in alpine streams by using removal sampling data from multiple locations.
The author compares 12 hierarchical models in the aim of estimating the abundance of fish in alpine streams by using removal sampling data collected at multiple locations. The most expanded model accounts for (i) variability of the abundance among locations, (ii) variability of the catchability among locations, and (iii) residual variability of the catchability among fish. Eleven model reductio...
متن کاملComparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کاملOptimization of Selenite Removal by Lactobacillus sp. Tra cheese 6 Using Box-Behnken Design
Background & Aims: High concentrations of selenite have carcinogenetic, cytotoxic and genotoxic effects. Therefore, removal of this toxic pullutant from the environment has a particular importance in maintaining public health. In this study, with the aim of optimization of selenite removal process, the design Box-Behnken method was used to estimate th...
متن کاملImproving Data Grids Performance by Using Modified Dynamic Hierarchical Replication Strategy
Abstract: A Data Grid connects a collection of geographically distributed computational and storage resources that enables users to share data and other resources. Data replication, a technique much discussed by Data Grid researchers in recent years creates multiple copies of file and places them in various locations to shorten file access times. In this paper, a dynamic data replication strate...
متن کاملArtificial Neural Network Approach for Modeling of Mercury Adsorption from Aqueous Solution by Sargassum Bevanom Algae (RESEARCH NOTE)
In this study, the adsorption of mercury ions by Sargassum bevanom (S. bevanom) by batch method was investigated. The optimum operating parameters such adsorbent dosage, contact time, and pH, were obtained as: a biomass dose of 0.4 g in 100 ml of mercury solution, contact time of 90 mins and pH 7, respectively. Three equations Morris –Weber, Lagergren and pseudo second order are tested to verif...
متن کامل